overview

Goal: Fixing the communication bottleneck for distributed optimization in supervised ML.

Contributions
- COCOA+ is a primal-dual framework for distributed optimization
 - efficient additive aggregation of local updates
 - strong convergence guarantees
 - framework: guarantees for arbitrary local solvers
 - significant practical speedup

COCOA+

Main Idea
Propose a local subproblem to allow additive, data dependent aggregation

![Diagram showing COCOA+](image)

- $\gamma = \frac{1}{2}$ => averaging, $\gamma = 1$ => adding

Local Subproblem

\[
\max_{\Delta \alpha_i \in [0, \Delta] \mid \text{ aggregation parameter } \gamma} g''_i(\Delta \alpha_i) \mid w, \alpha_i
\]

- σ^r = measure of difficulty of data partitioning
- $\sigma^s := \gamma K \in [1, K]$ safe in practice

CoCoA

Framework
- Input: Aggregation parameter $\gamma \in (0, 1]$
- Subproblem parameter σ

CoCoA+
- Rate independent of K
- Applies also to duality gap

convergence results

Local Θ-Approximation
For $\Theta \in [0, 1]$, we assume the local solver finds a (possibly) randomized approximate solution satisfying:

\[
\begin{align*}
\mathbb{E}[g''_i(\Delta \alpha_i) - g''_i(0)] \\
\leq \Theta(g''_i(\Delta \alpha_i) - g''_i(0))
\end{align*}
\]

Theorem. Let $\ell_i(.)$ be L-Lipschitz
Obtain suboptimality ϵ, after T iterations, with:

- CoCoA, averaging $\gamma = 1/K$

 $$T \geq \frac{K}{1 - \Theta} \left(\frac{SL^2}{\lambda x} + \epsilon \right)$$

- CoCoA+, adding $\gamma = 1$

 $$T \geq \frac{1}{1 - \Theta} \left(\frac{SL^2}{\lambda x} + \epsilon \right)$$

Local Θ-Approximation
For $\Theta \in [0, 1]$, we assume the local solver finds a (possibly) randomized approximate solution satisfying:

Theorem. Let $\ell_i(.)$ be μ-smooth
Obtain suboptimality ϵ, after T iterations, with:

- CoCoA, averaging $\gamma = 1/K$

 $$T \geq \frac{1}{1 - \Theta} \left(\frac{\mu K}{\lambda x} + \log T \right)$$

- CoCoA+, adding $\gamma = 1$

 $$T \geq \frac{1}{1 - \Theta} \left(\frac{\mu K}{\lambda x} + \log T \right)$$

setup

Primal problem formulation

\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + \frac{1}{n} \sum_{i=1}^n \ell_i(w^T x_i)
\]

data partitioned by examples $A_i := x_i$

Dual problem

\[
\max_{\alpha \in \mathbb{R}^n} -\frac{1}{2} \|\alpha\|^2 - \frac{1}{n} \sum_{i=1}^n \ell_i^*(\alpha_i) - \frac{1}{\lambda n} A_i \Delta \alpha_i
\]

flexible: can use arbitrary local solver

experiments in Spark

<table>
<thead>
<tr>
<th>Dataset</th>
<th>d</th>
<th>K</th>
<th>ϵ</th>
<th>μ</th>
<th>λ</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>438</td>
<td>2</td>
<td>0.01</td>
<td>50</td>
<td>1000</td>
<td>0.1</td>
</tr>
<tr>
<td>Spambase</td>
<td>58</td>
<td>16</td>
<td>0.005</td>
<td>2</td>
<td>100</td>
<td>0.001</td>
</tr>
<tr>
<td>Webspam</td>
<td>154</td>
<td>64</td>
<td>0.001</td>
<td>0.1</td>
<td>5</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Experiments with BDCA as a local solver -> reduces to BCDCA [1]

$H =$ number of local updates per round

code at: github.com/gingsmith/cocoa

scaling

references